TGF-β signaling alters H4K20me3 status via miR-29 and contributes to cellular senescence and cardiac aging.
Lyu, Guoliang
TGF-β signaling alters H4K20me3 status via miR-29 and contributes to cellular senescence and cardiac aging. [electronic resource] - Nature communications 07 2018 - 2560 p. digital
Publication Type: Journal Article; Research Support, Non-U.S. Gov't
2041-1723
10.1038/s41467-018-04994-z doi
Aging--genetics
Animals
Cellular Senescence--genetics
DNA Methylation--genetics
Embryo, Mammalian
Epigenesis, Genetic
Female
Fibroblasts
HEK293 Cells
Heart--physiology
Heterocyclic Compounds, 4 or More Rings--pharmacology
Histone-Lysine N-Methyltransferase--antagonists & inhibitors
Histones--metabolism
Human Umbilical Vein Endothelial Cells
Humans
Male
Mice
Mice, Inbred C57BL
MicroRNAs--metabolism
Myocytes, Cardiac--physiology
Oxidative Stress--physiology
Primary Cell Culture
Signal Transduction--genetics
Transforming Growth Factor beta--metabolism
TGF-β signaling alters H4K20me3 status via miR-29 and contributes to cellular senescence and cardiac aging. [electronic resource] - Nature communications 07 2018 - 2560 p. digital
Publication Type: Journal Article; Research Support, Non-U.S. Gov't
2041-1723
10.1038/s41467-018-04994-z doi
Aging--genetics
Animals
Cellular Senescence--genetics
DNA Methylation--genetics
Embryo, Mammalian
Epigenesis, Genetic
Female
Fibroblasts
HEK293 Cells
Heart--physiology
Heterocyclic Compounds, 4 or More Rings--pharmacology
Histone-Lysine N-Methyltransferase--antagonists & inhibitors
Histones--metabolism
Human Umbilical Vein Endothelial Cells
Humans
Male
Mice
Mice, Inbred C57BL
MicroRNAs--metabolism
Myocytes, Cardiac--physiology
Oxidative Stress--physiology
Primary Cell Culture
Signal Transduction--genetics
Transforming Growth Factor beta--metabolism