000 01499 a2200397 4500
005 20250518094907.0
264 0 _c20200720
008 202007s 0 0 eng d
022 _a1553-7358
024 7 _a10.1371/journal.pcbi.1007792
_2doi
040 _aNLM
_beng
_cNLM
100 1 _aAnguita-Ruiz, Augusto
245 0 0 _aeXplainable Artificial Intelligence (XAI) for the identification of biologically relevant gene expression patterns in longitudinal human studies, insights from obesity research.
_h[electronic resource]
260 _bPLoS computational biology
_c04 2020
300 _ae1007792 p.
_bdigital
500 _aPublication Type: Journal Article; Research Support, Non-U.S. Gov't
650 0 4 _aAlgorithms
650 0 4 _aArtificial Intelligence
_xtrends
650 0 4 _aComputational Biology
_xmethods
650 0 4 _aData Mining
_xmethods
650 0 4 _aDatabases, Genetic
650 0 4 _aGene Expression
_xgenetics
650 0 4 _aGene Expression Profiling
_xmethods
650 0 4 _aHumans
650 0 4 _aLongitudinal Studies
650 0 4 _aMachine Learning
650 0 4 _aObesity
_xgenetics
650 0 4 _aSoftware
650 0 4 _aTranscriptome
_xgenetics
700 1 _aSegura-Delgado, Alberto
700 1 _aAlcalá, Rafael
700 1 _aAguilera, Concepción M
700 1 _aAlcalá-Fdez, Jesús
773 0 _tPLoS computational biology
_gvol. 16
_gno. 4
_gp. e1007792
856 4 0 _uhttps://doi.org/10.1371/journal.pcbi.1007792
_zAvailable from publisher's website
999 _c30842972
_d30842972