000 01469 a2200457 4500
005 20250518093702.0
264 0 _c20200416
008 202004s 0 0 eng d
022 _a2369-2960
024 7 _a10.2196/18828
_2doi
040 _aNLM
_beng
_cNLM
100 1 _aAyyoubzadeh, Seyed Mohammad
245 0 0 _aPredicting COVID-19 Incidence Through Analysis of Google Trends Data in Iran: Data Mining and Deep Learning Pilot Study.
_h[electronic resource]
260 _bJMIR public health and surveillance
_c04 2020
300 _ae18828 p.
_bdigital
500 _aPublication Type: Journal Article
650 0 4 _aBetacoronavirus
650 0 4 _aCOVID-19
650 0 4 _aCoronavirus
650 0 4 _aCoronavirus Infections
_xepidemiology
650 0 4 _aData Mining
650 0 4 _aDeep Learning
650 0 4 _aDisease Outbreaks
650 0 4 _aFemale
650 0 4 _aHumans
650 0 4 _aIncidence
650 0 4 _aIran
_xepidemiology
650 0 4 _aMale
650 0 4 _aPandemics
650 0 4 _aPilot Projects
650 0 4 _aPneumonia, Viral
_xepidemiology
650 0 4 _aRisk Factors
650 0 4 _aSARS-CoV-2
650 0 4 _aSearch Engine
_xtrends
700 1 _aAyyoubzadeh, Seyed Mehdi
700 1 _aZahedi, Hoda
700 1 _aAhmadi, Mahnaz
700 1 _aR Niakan Kalhori, Sharareh
773 0 _tJMIR public health and surveillance
_gvol. 6
_gno. 2
_gp. e18828
856 4 0 _uhttps://doi.org/10.2196/18828
_zAvailable from publisher's website
999 _c30802434
_d30802434