000 | 01135 a2200349 4500 | ||
---|---|---|---|
005 | 20250518060638.0 | ||
264 | 0 | _c20191108 | |
008 | 201911s 0 0 eng d | ||
022 | _a1471-2105 | ||
024 | 7 |
_a10.1186/s12859-019-3010-3 _2doi |
|
040 |
_aNLM _beng _cNLM |
||
100 | 1 | _aMüller, Paul | |
245 | 0 | 0 |
_ananite: using machine learning to assess the quality of atomic force microscopy-enabled nano-indentation data. _h[electronic resource] |
260 |
_bBMC bioinformatics _cSep 2019 |
||
300 |
_a465 p. _bdigital |
||
500 | _aPublication Type: Journal Article | ||
650 | 0 | 4 | _aAnimals |
650 | 0 | 4 | _aAutomation |
650 | 0 | 4 | _aData Accuracy |
650 | 0 | 4 | _aMachine Learning |
650 | 0 | 4 | _aMicroscopy, Atomic Force |
650 | 0 | 4 | _aNanotechnology |
650 | 0 | 4 | _aSoftware |
650 | 0 | 4 | _aZebrafish |
700 | 1 | _aAbuhattum, Shada | |
700 | 1 | _aMöllmert, Stephanie | |
700 | 1 | _aUlbricht, Elke | |
700 | 1 | _aTaubenberger, Anna V | |
700 | 1 | _aGuck, Jochen | |
773 | 0 |
_tBMC bioinformatics _gvol. 20 _gno. 1 _gp. 465 |
|
856 | 4 | 0 |
_uhttps://doi.org/10.1186/s12859-019-3010-3 _zAvailable from publisher's website |
999 |
_c30091940 _d30091940 |