000 01135 a2200349 4500
005 20250518060638.0
264 0 _c20191108
008 201911s 0 0 eng d
022 _a1471-2105
024 7 _a10.1186/s12859-019-3010-3
_2doi
040 _aNLM
_beng
_cNLM
100 1 _aMüller, Paul
245 0 0 _ananite: using machine learning to assess the quality of atomic force microscopy-enabled nano-indentation data.
_h[electronic resource]
260 _bBMC bioinformatics
_cSep 2019
300 _a465 p.
_bdigital
500 _aPublication Type: Journal Article
650 0 4 _aAnimals
650 0 4 _aAutomation
650 0 4 _aData Accuracy
650 0 4 _aMachine Learning
650 0 4 _aMicroscopy, Atomic Force
650 0 4 _aNanotechnology
650 0 4 _aSoftware
650 0 4 _aZebrafish
700 1 _aAbuhattum, Shada
700 1 _aMöllmert, Stephanie
700 1 _aUlbricht, Elke
700 1 _aTaubenberger, Anna V
700 1 _aGuck, Jochen
773 0 _tBMC bioinformatics
_gvol. 20
_gno. 1
_gp. 465
856 4 0 _uhttps://doi.org/10.1186/s12859-019-3010-3
_zAvailable from publisher's website
999 _c30091940
_d30091940