000 01534 a2200433 4500
005 20250518054041.0
264 0 _c20200713
008 202007s 0 0 eng d
022 _a2168-6262
024 7 _a10.1001/jamasurg.2019.2979
_2doi
040 _aNLM
_beng
_cNLM
100 1 _aHyer, J Madison
245 0 0 _aNovel Machine Learning Approach to Identify Preoperative Risk Factors Associated With Super-Utilization of Medicare Expenditure Following Surgery.
_h[electronic resource]
260 _bJAMA surgery
_c11 2019
300 _a1014-1021 p.
_bdigital
500 _aPublication Type: Journal Article; Observational Study
650 0 4 _aAged
650 0 4 _aElective Surgical Procedures
650 0 4 _aFemale
650 0 4 _aHealth Expenditures
_xstatistics & numerical data
650 0 4 _aHumans
650 0 4 _aMachine Learning
650 0 4 _aMale
650 0 4 _aMedicare
_xeconomics
650 0 4 _aPatient Acceptance of Health Care
_xstatistics & numerical data
650 0 4 _aPostoperative Care
_xeconomics
650 0 4 _aPreoperative Care
_xmethods
650 0 4 _aRetrospective Studies
650 0 4 _aRisk Assessment
_xmethods
650 0 4 _aRisk Factors
650 0 4 _aUnited States
700 1 _aEjaz, Aslam
700 1 _aTsilimigras, Diamantis I
700 1 _aParedes, Anghela Z
700 1 _aMehta, Rittal
700 1 _aPawlik, Timothy M
773 0 _tJAMA surgery
_gvol. 154
_gno. 11
_gp. 1014-1021
856 4 0 _uhttps://doi.org/10.1001/jamasurg.2019.2979
_zAvailable from publisher's website
999 _c30004580
_d30004580