000 | 01534 a2200433 4500 | ||
---|---|---|---|
005 | 20250518054041.0 | ||
264 | 0 | _c20200713 | |
008 | 202007s 0 0 eng d | ||
022 | _a2168-6262 | ||
024 | 7 |
_a10.1001/jamasurg.2019.2979 _2doi |
|
040 |
_aNLM _beng _cNLM |
||
100 | 1 | _aHyer, J Madison | |
245 | 0 | 0 |
_aNovel Machine Learning Approach to Identify Preoperative Risk Factors Associated With Super-Utilization of Medicare Expenditure Following Surgery. _h[electronic resource] |
260 |
_bJAMA surgery _c11 2019 |
||
300 |
_a1014-1021 p. _bdigital |
||
500 | _aPublication Type: Journal Article; Observational Study | ||
650 | 0 | 4 | _aAged |
650 | 0 | 4 | _aElective Surgical Procedures |
650 | 0 | 4 | _aFemale |
650 | 0 | 4 |
_aHealth Expenditures _xstatistics & numerical data |
650 | 0 | 4 | _aHumans |
650 | 0 | 4 | _aMachine Learning |
650 | 0 | 4 | _aMale |
650 | 0 | 4 |
_aMedicare _xeconomics |
650 | 0 | 4 |
_aPatient Acceptance of Health Care _xstatistics & numerical data |
650 | 0 | 4 |
_aPostoperative Care _xeconomics |
650 | 0 | 4 |
_aPreoperative Care _xmethods |
650 | 0 | 4 | _aRetrospective Studies |
650 | 0 | 4 |
_aRisk Assessment _xmethods |
650 | 0 | 4 | _aRisk Factors |
650 | 0 | 4 | _aUnited States |
700 | 1 | _aEjaz, Aslam | |
700 | 1 | _aTsilimigras, Diamantis I | |
700 | 1 | _aParedes, Anghela Z | |
700 | 1 | _aMehta, Rittal | |
700 | 1 | _aPawlik, Timothy M | |
773 | 0 |
_tJAMA surgery _gvol. 154 _gno. 11 _gp. 1014-1021 |
|
856 | 4 | 0 |
_uhttps://doi.org/10.1001/jamasurg.2019.2979 _zAvailable from publisher's website |
999 |
_c30004580 _d30004580 |