000 01542 a2200445 4500
005 20250518051925.0
264 0 _c20191220
008 201912s 0 0 eng d
022 _a1422-0067
024 7 _a10.3390/ijms20143572
_2doi
040 _aNLM
_beng
_cNLM
100 1 _aWei, Yu
245 0 0 _aTargeting HIV/HCV Coinfection Using a Machine Learning-Based Multiple Quantitative Structure-Activity Relationships (Multiple QSAR) Method.
_h[electronic resource]
260 _bInternational journal of molecular sciences
_cJul 2019
500 _aPublication Type: Journal Article
650 0 4 _aAlgorithms
650 0 4 _aAnti-HIV Agents
_xchemistry
650 0 4 _aAntiviral Agents
_xchemistry
650 0 4 _aBayes Theorem
650 0 4 _aDatabases, Pharmaceutical
650 0 4 _aDrug Discovery
650 0 4 _aHIV Infections
_xdrug therapy
650 0 4 _aHIV-1
_xdrug effects
650 0 4 _aHepacivirus
_xdrug effects
650 0 4 _aHepatitis C
_xdrug therapy
650 0 4 _aHumans
650 0 4 _aMachine Learning
650 0 4 _aModels, Molecular
650 0 4 _aMolecular Conformation
650 0 4 _aMolecular Structure
650 0 4 _aPolypharmacology
650 0 4 _aProtein Binding
650 0 4 _aQuantitative Structure-Activity Relationship
700 1 _aLi, Wei
700 1 _aDu, Tengfei
700 1 _aHong, Zhangyong
700 1 _aLin, Jianping
773 0 _tInternational journal of molecular sciences
_gvol. 20
_gno. 14
856 4 0 _uhttps://doi.org/10.3390/ijms20143572
_zAvailable from publisher's website
999 _c29931280
_d29931280