000 01651 a2200505 4500
005 20250518034225.0
264 0 _c20190822
008 201908s 0 0 eng d
022 _a2157-846X
024 7 _a10.1038/s41551-018-0304-0
_2doi
040 _aNLM
_beng
_cNLM
100 1 _aLundberg, Scott M
245 0 0 _aExplainable machine-learning predictions for the prevention of hypoxaemia during surgery.
_h[electronic resource]
260 _bNature biomedical engineering
_c10 2018
300 _a749-760 p.
_bdigital
500 _aPublication Type: Journal Article; Research Support, N.I.H., Extramural; Research Support, U.S. Gov't, Non-P.H.S.
650 0 4 _aAdult
650 0 4 _aAged
650 0 4 _aAged, 80 and over
650 0 4 _aAnesthesia, General
_xadverse effects
650 0 4 _aAnesthesiologists
_xpsychology
650 0 4 _aArea Under Curve
650 0 4 _aElectronic Health Records
650 0 4 _aFemale
650 0 4 _aHumans
650 0 4 _aHypoxia
_xetiology
650 0 4 _aMachine Learning
650 0 4 _aMale
650 0 4 _aMiddle Aged
650 0 4 _aROC Curve
650 0 4 _aRisk Factors
650 0 4 _aSurgical Procedures, Operative
700 1 _aNair, Bala
700 1 _aVavilala, Monica S
700 1 _aHoribe, Mayumi
700 1 _aEisses, Michael J
700 1 _aAdams, Trevor
700 1 _aListon, David E
700 1 _aLow, Daniel King-Wai
700 1 _aNewman, Shu-Fang
700 1 _aKim, Jerry
700 1 _aLee, Su-In
773 0 _tNature biomedical engineering
_gvol. 2
_gno. 10
_gp. 749-760
856 4 0 _uhttps://doi.org/10.1038/s41551-018-0304-0
_zAvailable from publisher's website
999 _c29604651
_d29604651