000 | 01741 a2200529 4500 | ||
---|---|---|---|
005 | 20250518020933.0 | ||
264 | 0 | _c20191209 | |
008 | 201912s 0 0 eng d | ||
022 | _a1878-8769 | ||
024 | 7 |
_a10.1016/j.wneu.2018.12.220 _2doi |
|
040 |
_aNLM _beng _cNLM |
||
100 | 1 | _aLee, Cheng-Chia | |
245 | 0 | 0 |
_aIntervening Nidal Brain Parenchyma and Risk of Radiation-Induced Changes After Radiosurgery for Brain Arteriovenous Malformation: A Study Using an Unsupervised Machine Learning Algorithm. _h[electronic resource] |
260 |
_bWorld neurosurgery _c05 2019 |
||
300 |
_ae132-e138 p. _bdigital |
||
500 | _aPublication Type: Journal Article | ||
650 | 0 | 4 | _aAdolescent |
650 | 0 | 4 | _aAdult |
650 | 0 | 4 | _aAged |
650 | 0 | 4 | _aAlgorithms |
650 | 0 | 4 |
_aBrain _xradiation effects |
650 | 0 | 4 | _aChild |
650 | 0 | 4 | _aFemale |
650 | 0 | 4 | _aHumans |
650 | 0 | 4 |
_aIntracranial Arteriovenous Malformations _xradiotherapy |
650 | 0 | 4 | _aMale |
650 | 0 | 4 | _aMiddle Aged |
650 | 0 | 4 |
_aParenchymal Tissue _xradiation effects |
650 | 0 | 4 | _aProspective Studies |
650 | 0 | 4 |
_aRadiation Injuries _xetiology |
650 | 0 | 4 |
_aRadiosurgery _xadverse effects |
650 | 0 | 4 | _aRisk Factors |
650 | 0 | 4 | _aUnsupervised Machine Learning |
650 | 0 | 4 | _aYoung Adult |
700 | 1 | _aYang, Huai-Che | |
700 | 1 | _aLin, Chung-Jung | |
700 | 1 | _aChen, Ching-Jen | |
700 | 1 | _aWu, Hsiu-Mei | |
700 | 1 | _aShiau, Cheng-Ying | |
700 | 1 | _aGuo, Wan-Yuo | |
700 | 1 | _aHung-Chi Pan, David | |
700 | 1 | _aLiu, Kang-Du | |
700 | 1 | _aChung, Wen-Yuh | |
700 | 1 | _aPeng, Syu-Jyun | |
773 | 0 |
_tWorld neurosurgery _gvol. 125 _gp. e132-e138 |
|
856 | 4 | 0 |
_uhttps://doi.org/10.1016/j.wneu.2018.12.220 _zAvailable from publisher's website |
999 |
_c29287988 _d29287988 |