000 01530 a2200421 4500
005 20250518013022.0
264 0 _c20200207
008 202002s 0 0 eng d
022 _a1759-7714
024 7 _a10.1111/1759-7714.12931
_2doi
040 _aNLM
_beng
_cNLM
100 1 _aLi, Li
245 0 0 _aEvaluating the performance of a deep learning-based computer-aided diagnosis (DL-CAD) system for detecting and characterizing lung nodules: Comparison with the performance of double reading by radiologists.
_h[electronic resource]
260 _bThoracic cancer
_c02 2019
300 _a183-192 p.
_bdigital
500 _aPublication Type: Comparative Study; Evaluation Study; Journal Article
650 0 4 _aCase-Control Studies
650 0 4 _aDeep Learning
650 0 4 _aDiagnosis, Computer-Assisted
_xmethods
650 0 4 _aEarly Detection of Cancer
650 0 4 _aFemale
650 0 4 _aFollow-Up Studies
650 0 4 _aHumans
650 0 4 _aMale
650 0 4 _aMiddle Aged
650 0 4 _aMultiple Pulmonary Nodules
_xdiagnosis
650 0 4 _aPrognosis
650 0 4 _aRadiologists
_xstatistics & numerical data
650 0 4 _aReproducibility of Results
650 0 4 _aSolitary Pulmonary Nodule
_xdiagnosis
650 0 4 _aTomography, X-Ray Computed
700 1 _aLiu, Zhou
700 1 _aHuang, Hua
700 1 _aLin, Meng
700 1 _aLuo, Dehong
773 0 _tThoracic cancer
_gvol. 10
_gno. 2
_gp. 183-192
856 4 0 _uhttps://doi.org/10.1111/1759-7714.12931
_zAvailable from publisher's website
999 _c29149797
_d29149797