000 | 01146 a2200301 4500 | ||
---|---|---|---|
005 | 20250517172300.0 | ||
264 | 0 | _c20190814 | |
008 | 201908s 0 0 eng d | ||
022 | _a1552-4957 | ||
024 | 7 |
_a10.1002/cyto.b.21588 _2doi |
|
040 |
_aNLM _beng _cNLM |
||
100 | 1 | _aDiGiuseppe, Joseph A | |
245 | 0 | 0 |
_aPhenoGraph and viSNE facilitate the identification of abnormal T-cell populations in routine clinical flow cytometric data. _h[electronic resource] |
260 |
_bCytometry. Part B, Clinical cytometry _c09 2018 |
||
300 |
_a588-601 p. _bdigital |
||
500 | _aPublication Type: Journal Article; Research Support, N.I.H., Extramural; Research Support, U.S. Gov't, Non-P.H.S. | ||
650 | 0 | 4 | _aAlgorithms |
650 | 0 | 4 | _aFlow Cytometry |
650 | 0 | 4 | _aHumans |
650 | 0 | 4 | _aImmunophenotyping |
650 | 0 | 4 | _aPhenotype |
650 | 0 | 4 |
_aT-Lymphocytes _xpathology |
700 | 1 | _aCardinali, Jolene L | |
700 | 1 | _aRezuke, William N | |
700 | 1 | _aPe'er, Dana | |
773 | 0 |
_tCytometry. Part B, Clinical cytometry _gvol. 94 _gno. 5 _gp. 588-601 |
|
856 | 4 | 0 |
_uhttps://doi.org/10.1002/cyto.b.21588 _zAvailable from publisher's website |
999 |
_c27521391 _d27521391 |