000 00959 a2200265 4500
005 20250516231403.0
264 0 _c20150511
008 201505s 0 0 eng d
022 _a1537-744X
024 7 _a10.1155/2014/176052
_2doi
040 _aNLM
_beng
_cNLM
100 1 _aTing, T O
245 0 0 _aTuning of Kalman filter parameters via genetic algorithm for state-of-charge estimation in battery management system.
_h[electronic resource]
260 _bTheScientificWorldJournal
_c2014
300 _a176052 p.
_bdigital
500 _aPublication Type: Journal Article; Research Support, Non-U.S. Gov't
650 0 4 _aAlgorithms
650 0 4 _aEnergy-Generating Resources
650 0 4 _aModels, Theoretical
700 1 _aMan, Ka Lok
700 1 _aLim, Eng Gee
700 1 _aLeach, Mark
773 0 _tTheScientificWorldJournal
_gvol. 2014
_gp. 176052
856 4 0 _uhttps://doi.org/10.1155/2014/176052
_zAvailable from publisher's website
999 _c24134872
_d24134872