000 01285 a2200325 4500
005 20250516155314.0
264 0 _c20140206
008 201402s 0 0 eng d
022 _a1471-2105
024 7 _a10.1186/1471-2105-14-206
_2doi
040 _aNLM
_beng
_cNLM
100 1 _aRichardson, Alice M
245 0 0 _aInfection status outcome, machine learning method and virus type interact to affect the optimised prediction of hepatitis virus immunoassay results from routine pathology laboratory assays in unbalanced data.
_h[electronic resource]
260 _bBMC bioinformatics
_cJun 2013
300 _a206 p.
_bdigital
500 _aPublication Type: Journal Article; Research Support, Non-U.S. Gov't
650 0 4 _aArtificial Intelligence
650 0 4 _aDecision Support Techniques
650 0 4 _aDecision Trees
650 0 4 _aHepacivirus
_xisolation & purification
650 0 4 _aHepatitis B
_xdiagnosis
650 0 4 _aHepatitis B virus
_xisolation & purification
650 0 4 _aHepatitis C
_xdiagnosis
650 0 4 _aHumans
650 0 4 _aImmunoassay
650 0 4 _aImmunologic Tests
700 1 _aLidbury, Brett A
773 0 _tBMC bioinformatics
_gvol. 14
_gp. 206
856 4 0 _uhttps://doi.org/10.1186/1471-2105-14-206
_zAvailable from publisher's website
999 _c22866076
_d22866076