000 | 01285 a2200325 4500 | ||
---|---|---|---|
005 | 20250516155314.0 | ||
264 | 0 | _c20140206 | |
008 | 201402s 0 0 eng d | ||
022 | _a1471-2105 | ||
024 | 7 |
_a10.1186/1471-2105-14-206 _2doi |
|
040 |
_aNLM _beng _cNLM |
||
100 | 1 | _aRichardson, Alice M | |
245 | 0 | 0 |
_aInfection status outcome, machine learning method and virus type interact to affect the optimised prediction of hepatitis virus immunoassay results from routine pathology laboratory assays in unbalanced data. _h[electronic resource] |
260 |
_bBMC bioinformatics _cJun 2013 |
||
300 |
_a206 p. _bdigital |
||
500 | _aPublication Type: Journal Article; Research Support, Non-U.S. Gov't | ||
650 | 0 | 4 | _aArtificial Intelligence |
650 | 0 | 4 | _aDecision Support Techniques |
650 | 0 | 4 | _aDecision Trees |
650 | 0 | 4 |
_aHepacivirus _xisolation & purification |
650 | 0 | 4 |
_aHepatitis B _xdiagnosis |
650 | 0 | 4 |
_aHepatitis B virus _xisolation & purification |
650 | 0 | 4 |
_aHepatitis C _xdiagnosis |
650 | 0 | 4 | _aHumans |
650 | 0 | 4 | _aImmunoassay |
650 | 0 | 4 | _aImmunologic Tests |
700 | 1 | _aLidbury, Brett A | |
773 | 0 |
_tBMC bioinformatics _gvol. 14 _gp. 206 |
|
856 | 4 | 0 |
_uhttps://doi.org/10.1186/1471-2105-14-206 _zAvailable from publisher's website |
999 |
_c22866076 _d22866076 |