Redox State Controls Phase Separation of the Yeast Ataxin-2 Protein via Reversible Oxidation of Its Methionine-Rich Low-Complexity Domain.
Kato, Masato
Redox State Controls Phase Separation of the Yeast Ataxin-2 Protein via Reversible Oxidation of Its Methionine-Rich Low-Complexity Domain. [electronic resource] - Cell 04 2019 - 711-721.e8 p. digital
Publication Type: Journal Article; Research Support, N.I.H., Extramural; Research Support, Non-U.S. Gov't
1097-4172
10.1016/j.cell.2019.02.044 doi
Amino Acid Sequence
Carrier Proteins--chemistry
Hydrogen Peroxide--pharmacology
Mechanistic Target of Rapamycin Complex 1--metabolism
Methionine--chemistry
Methionine Sulfoxide Reductases--metabolism
Mitochondria--drug effects
Mutagenesis, Site-Directed
Oxidation-Reduction
Oxidative Stress--drug effects
Phase Transition
Protein Domains
Saccharomyces cerevisiae--metabolism
Saccharomyces cerevisiae Proteins--chemistry
Redox State Controls Phase Separation of the Yeast Ataxin-2 Protein via Reversible Oxidation of Its Methionine-Rich Low-Complexity Domain. [electronic resource] - Cell 04 2019 - 711-721.e8 p. digital
Publication Type: Journal Article; Research Support, N.I.H., Extramural; Research Support, Non-U.S. Gov't
1097-4172
10.1016/j.cell.2019.02.044 doi
Amino Acid Sequence
Carrier Proteins--chemistry
Hydrogen Peroxide--pharmacology
Mechanistic Target of Rapamycin Complex 1--metabolism
Methionine--chemistry
Methionine Sulfoxide Reductases--metabolism
Mitochondria--drug effects
Mutagenesis, Site-Directed
Oxidation-Reduction
Oxidative Stress--drug effects
Phase Transition
Protein Domains
Saccharomyces cerevisiae--metabolism
Saccharomyces cerevisiae Proteins--chemistry